Integrating the Projective Transform with Particle Filtering for Visual Tracking

نویسندگان

  • Philippe Loic Marie Bouttefroy
  • Abdesselam Bouzerdoum
  • Son Lam Phung
  • Azeddine Beghdadi
چکیده

This paper presents the projective particle filter, a Bayesian filtering technique integrating the projective transform, which describes the distortion of vehicle trajectories on the camera plane. The characteristics inherent to traffic monitoring, and in particular the projective transform, are integrated in the particle filtering framework in order to improve the tracking robustness and accuracy. It is shown that the projective transform can be fully described by three parameters, namely, the angle of view, the height of the camera, and the ground distance to the first point of capture. This information is integrated in the importance density so as to explore the feature space more accurately. By providing a fine distribution of the samples in the feature space, the projective particle filter outperforms the standard particle filter on different tracking measures. First, the resampling frequency is reduced due to a better fit of the importance density for the estimation of the posterior density. Second, the mean squared error between the feature vector estimate and the true state is reduced compared to the estimate provided by the standard particle filter. Third, the tracking rate is improved for the projective particle filter, hence decreasing track loss.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Tracking using Kernel Projected Measurement and Log-Polar Transformation

Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...

متن کامل

Spatio-Temporal Auxiliary Particle Filtering With ℓ1-Norm-Based Appearance Model Learning for Robust Visual Tracking

In this paper, we propose an efficient and accurate visual tracker equipped with a new particle filtering algorithm and robust subspace learning-based appearance model. The proposed visual tracker avoids drifting problems caused by abrupt motion changes and severe appearance variations that are well-known difficulties in visual tracking. The proposed algorithm is based on a type of auxiliary pa...

متن کامل

Visual tracking using Particle Filter and Monte Carlo Markov Chain

Tracking is an important processing step for many single and multi-camera applications such as sports video analysis, traffic monitoring and event detection. In the first part of the paper, we present a framework of visual tracking using first-order Markov state-space model. We subsequently use Sequential importance Sampling method to estimate the posterior density and obtain the firstorder par...

متن کامل

Development of Multi-target Tracking Technique Based on Background Modeling and Particle Filtering

Based on implementing target tracking by means of particle filtering, a technique framework of tracking target by integrating particle filtering and background modeling is presented. The multi-target tracking (MTT) is classified into 5 modules as background modeling, multi-target tracking, initializing, re-initializing and particle filtering. Firstly, the author models each pixel of the image w...

متن کامل

New Lane Model and Distance Transform for Lane Detection and Tracking

Particle filtering of boundary points is a robust way to estimate lanes. This paper introduces a new lane model in correspondence to this particle filterbased approach, which is flexible to detect all kinds of lanes. A modified version of an Euclidean distance transform is applied to an edge map of a road image from a birds-eye view to provide information for boundary point detection. An effici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Image and Video Processing

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011